Minimally Invasive Tissue Removal System

maxon precision motors, inc. (as seen on Robotics Online)

Medical engineers consistently look for ways to provide devices to physicians that offer smaller incision requirements, a more accurate procedure, and the opportunity for a quicker recovery.

The five man engineering team at Interlace Medical worked on their latest tissue removal system for about two and a half years from the original concept to completion of their latest upgrade. Fast turnaround of new devices is always a valuable asset for a company, but it’s all about finding and implementing the right components for the results you’re looking to achieve.

Interlace’s MyoSure® Tissue Removal System was designed to remove fibroids found on the uterine wall. Fibroids affect more than thirty percent of women in the U.S. according to the Advanced Gynecology Solutions website put together by Dr. Paul D. Indman, M.D. Typically women who have fibroids visit their doctor because of abnormal bleeding between menstrual cycles.

In the past, the primary tool used to remove the fibroid tissue was a monopolar loop electrode. The device is used to literally scrape the tissue from the uterine wall. This method produces a large amount of “chips” that can also get in the way of the operation, slowing it down considerably and creating the possibility of less accurate cuts.

It has long been the request of physicians that a less intrusive device be designed for these operations. Once an alternative became available, it was very slow and could not compete with the older monopolar loop electrode methods already in use by many practitioners.

The MyoSure device was designed to eliminate the challenges posed by the presently marketed devices. Since the design of the new system was performed largely in-house, the Interlace Medical team was able to get together regularly and go over the pros and cons in each design step. The team was also very sensitive about the way the device went together to hold down manufacturing costs, which could be passed along directly to the customer.

See the full technical paper on Robotics Online


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: